Interactive effect of temperature and CO2 increase in Arctic phytoplankton

نویسندگان

  • Alexandra Coello-Camba
  • Susana Agustí
  • Johnna Holding
  • Jesús M. Arrieta
  • Carlos M. Duarte
چکیده

*Correspondence: Carlos M. Duarte, The UWA Oceans Institute and School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia e-mail: [email protected] An experiment was performed in order to analyze the effects of the increase in water temperature and CO2 partial pressure expected for the end of this century in a present phytoplankton community inhabiting the Arctic Ocean. We analyzed both factors acting independently and together, to test possible interactions between them. The arctic planktonic community was incubated under six different treatments combining three experimental temperatures (1, 6, and 10◦C) with two different CO2 levels of 380 or 1000 ppm, at the UNIS installations in Longyearbyen (Svalbard), in summer 2010. Under warmer temperatures, a decrease in chlorophyll a concentration, biovolume and primary production was found, together with a shift in community structure toward a dominance of smaller cells (nano-sized). Effects of increased pCO2 were more modest, and although interactions were weak, our results suggest antagonistic interactive effects amongst increased temperature and CO2 levels, as elevated CO2 compensated partially the decrease in phytoplankton biomass induced by temperature in some groups. Interactions between the two stressors were generally weak, but elevated CO2 was observed to lead to a steeper decline in primary production with warming. Our results also suggest that future increases in water temperature and pCO2 would lead to a decrease in the community chl a concentration and biomass in the Arctic phytoplankton communities examined, leading to communities dominated by smaller nano-phytoplankton groups, with important consequences for the flow of carbon and food web dynamics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2) on the order of −66 to −199 Tg C year−1 (1012 g C), contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exc...

متن کامل

Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean

Polar areas are experiencing the steepest warming rates on Earth, a trend expected to continue in the future. In these habitats, phytoplankton communities constitute the basis of the food web and their thermal tolerance may dictate how warming affects these delicate environments. Here, we compiled available data on thermal responses of phytoplankton growth in polar waters. We assembled 53 growt...

متن کامل

Effect of elevated CO2 on the dynamics of particle-attached and free-living bacterioplankton communities in an Arctic fjord

In the frame of the European Project on Ocean Acidification (EPOCA), the response of an Arctic pelagic community (<3 mm) to a gradient of seawater pCO2 was investigated. For this purpose 9 large-scale in situ mesocosms were deployed in Kongsfjorden, Svalbard (7856.2 N, 1153.6 E), in 2010. The present study investigates effects on the communities of particle-attached (PA; >3 μm) and free-living ...

متن کامل

Characterization and Temperature Dependence of Arctic Micromonas polaris Viruses

Global climate change-induced warming of the Artic seas is predicted to shift the phytoplankton community towards dominance of smaller-sized species due to global warming. Yet, little is known about their viral mortality agents despite the ecological importance of viruses regulating phytoplankton host dynamics and diversity. Here we report the isolation and basic characterization of four prasin...

متن کامل

Amplified Arctic warming by phytoplankton under greenhouse warming.

Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future clima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014